
Christopher Langton's ant can be generalized by adding states to the ant, producing automata known as turmites. Shown here is the behavior of one interesting two-state turmite, started on an empty plane. Click the thumbnail to see more generations; you'll see that this turmite always produces a framed square with the same distinctive irregular pattern.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import Control.Arrow ((***)) | |
import Control.Monad (join, void, when) | |
import Data.Set (delete, empty, insert, member, toList) | |
import Graphics.UI.SDL as SDL | |
(xres, yres, sq) = (1600, 900, 2) | |
main = withInit [InitVideo] $ do | |
w <- setVideoMode xres yres 32 [NoFrame] | |
enableEvent SDLMouseMotion False | |
setCaption "Turmite" "Turmite" | |
run w [1..] 0 p (0,1) empty | |
where | |
p = (xres `div` 2 `div` sq, yres `div` 2 `div` sq) | |
run w (n:ns) s p v ps = do | |
when (n `mod` 23 == 0) $ render w ps | |
e <- pollEvent | |
case e of | |
KeyUp (Keysym SDLK_ESCAPE _ _) -> print n >> printout | |
KeyUp (Keysym SDLK_SPACE _ _) -> pause w s p v ps | |
_ -> continue | |
where | |
continue = go w ns s p v ps | |
printout = void $ saveBMP w "output.bmp" | |
pause w s p v ps = do | |
delay 128 | |
e <- pollEvent | |
case e of | |
KeyUp (Keysym SDLK_ESCAPE _ _) -> return () | |
KeyUp (Keysym SDLK_SPACE _ _) -> run w [1..] s p v ps | |
_ -> pause w s p v ps | |
render w ps = do | |
fillRect w (Just $ Rect 0 0 xres yres) $ Pixel 0 | |
mapM_ (draw w . join (***) (* sq)) $ toList ps | |
SDL.flip w | |
draw w p = f p =<< g [SWSurface] sq sq 32 0 0 0 0 | |
where | |
rect x y = Just $ Rect x y sq sq | |
g = createRGBSurface | |
f (x,y) s = do fillRect s (rect 0 0) $ Pixel 0xFFFFFF | |
blitSurface s (rect 0 0) w $ rect x y | |
go w ns s p v ps | |
| s == 0 && not b = run w ns 0 (f p $ l' v) (l' v) qs | |
| s == 0 && True = run w ns 1 (f p $ r' v) (r' v) qs | |
| s == 1 && not b = run w ns 0 (f p $ r' v) (r' v) rs | |
| otherwise = run w ns 1 (f p $ l' v) (l' v) rs | |
where | |
b = member p ps | |
(qs, rs) = (insert p ps, delete p ps) | |
f (x, y) = (x +) *** (+ y) | |
r' (0, y) = (-y, 0) | |
r' (x, y) = ( y, x) | |
l' (0, y) = ( y, 0) | |
l' (x, y) = ( y, -x) |